

FPGA implementation of Singular Value

Decomposition

Karthikeyan N

Department of Electrical Engineering

Indian Institute of Technology Madras

Chennai - 600036, India

ee12s008@ee.iitm.ac.in

Sathyanarayanan S

Department of Computer Science and Engineering

Indian Institute of Technology Madras

Chennai – 600036, India

sathya@cse.iitm.ac.in

Vamsi Krishna S

Department of Computer Science and Engineering

Indian Institute of Technology Madras

Chennai - 600036, India

vamc@cse.iitm.ac.in

Shankar Balachandran

Department of Computer Science and Engineering

Indian Institute of Technology Madras

Chennai – 600036, India

shankar@cse.iitm.ac.in

Abstract—Singular value decomposition has been used in signal

processing, image processing, principal component analysis,

robotics and my other real time applications. These applications

demand fast processing of large datasets. SVD needs large

amount of computation. In this paper, we present the parallel

implementation of Singular Value Decomposition in FGPA. SVD

is implemented using two sided Jacobi algorithm to attain

parallel systolic array architecture. The diagonal processing

elements compute the rotation parameter and propagate to other

off-diagonal processing elements in row and column for row and

column operations respectively. The CORDIC algorithm is used

in each processing element and optimized to have one bit rotation

parameter which reduces the hardware requirement and routing

overhead. The design has been tested and verified in Xilinx

Spartan-6 LX45 FPGA for 4x4 asymmetric matrix.

Keywords—SVD; Jacobi algorithm; FPGA; CORDIC

I. INTRODUCTION

Singular Value Decomposition is a matrix factorization
which decomposes any MxN rectangular matrix to a MxM
orthogonal matrix, MxN diagonal matrix and NxN orthogonal
matrix. MxN diagonal matrix contains the singular values of
the rectangular matrix. SVD decomposition equation can be
written as in

 A = U Σ V
T
 (1)

SVD is used in many applications such as Low rank
approximation, Image Compression, Estimation & Inversion,
pseudo inverse, principal component analysis etc. In many
cases in real world applications, SVD computation needs to be
done in real time, which demands a fast method for SVD
computation. Parallel algorithms always fast in computing
SVD. Implementing such parallel algorithm in FPGA will be
suitable for real time applications. The paper is organized as
follows. Section II discusses objective and requirements of the
design. Section III discusses about possible applications and an
example. Section IV discusses about choice of approach and

algorithm explanation. Section V explains the testing strategy
used and the testing results. Section VI gives the insight of
hardware used in the design. We conclude the paper after
giving timing information of the design.

II. OBJECTIVE

To implement Singular Value Decomposition (SVD) of a
real matrix in FPGA with following requirements

1) The design should run at minimum frequency of 50MHz.

2) Once the input is loaded into the BRAM module and run
signal is raised, the design takes 1000 clock cycles to complete
the operation and load the values into BRAM module.

3) The design computes SVD for symmetric matrices of
maximum dimension 4X4 with each element as 16-bit.

III. APPLICATIONS

A. Possible Applications

Hardware implementation of SVD is used in real time
processing for Image processing applications such as face
recognition, motion detection etc., Analysis of the kinematic
and dynamic characteristics of robotic manipulators [3], Signal
processing applications, mainly least squares type problems,
Computation of pseudo inverse, MIMO communication
systems.

Such real-time applications need a hardware
implementation of SVD. For fast computation of SVD, we go
for parallel implementation approach in hardware.

B. Target Example

SVD is used in MIMO channel communication systems.
MIMO systems offer increased capacity and data rate without
any increase in bandwidth or power. Paper [4] shows how SVD
can be used in MIMO systems to decompose a MIMO channel
into parallel sub-channels. So the computation speed for SVD
should be very high in those real-time systems. We cannot go

for a Parallel computer based approach because often the
communication system may be mobile. Hardware, on-board
solution is needed which can be achieved by implementing
parallel computation of SVD in FPGA or ASIC.

IV. DESIGN STRATEGY

A. Choice of Approach

This project aims at implementing SVD calculation
algorithm which is suited for FPGAs. There are many methods
like Jacobi method; QR method and Hestenes (one-sided
rotation) method are available for calculating SVD values. But,
Jacobi algorithm is preferred because of its simplicity and the
parallelism that can be exploited. This implementation aims at
improving the speed of the traditional Jacobi algorithm by
exploiting parallelism available. Initially, Singular Value
Decomposition problem is reduced to symmetric Eigen Value
Decomposition problem. After reduction, two sided Jacobi
rotation method is used to find EVD. Jacobi algorithm is
preferred because of its simplicity, regularity and local
communication.

B. Implementation Methodology

In this method, given NxN matrix is divided into N/2 2x2
sub problems and solved. This method uses CORDIC
algorithm for doing Jacobi rotations. Jacobi Algorithm for
Symmetric Eigen value computation is explained as follows.

In two sided rotation Jacobi SVD algorithm, the matrix A is
diagonalised by multiplying by left sided rotation matrix J(p, q,
θ)‟ and right sided rotation matrix J(p, q, θ) in

 A = J(p,q,θ)‟ * A * J(p,q,θ) (2)

for all (p,q) combinations, p,q ϵ 1 to N

Multiplication by left rotation matrix only modifies p
th
 and

q
th
 rows of matrix A. Similarly, multiplication by right rotation

matrix only modifies p
th
 and q

th
 columns. The remaining values

remain unchanged. This provides an opportunity to apply two
Jacobi rotations in parallel for two non-overlapping values of
(p,q).

This allows us to perform many row operations (left
rotation) in parallel and also for columns. Thus, this parallel
algorithm is suitable for hardware implementation. For matrix,

θ is computed as follows,

 (3)

This θ can be propagated to the (p,q) rows of matrix A for left
rotation and same is done for right rotation (columns). If we
have NxN matrix, we can do left rotation & right rotations for
n/2 (p,q) combinations in parallel. It takes two cycles (one for
left rotation and another for right rotation). To cover all p,q
combinations, it takes (n-1) left and right rotations. So, over all
operation take (n-1)x(2)x(n/2) cycles for complete Jacobi SVD
algorithm. This complete cycle is called one sweep. Jacobi
algorithm may need 3 to 6 sweeps in order to get correct SVD
values.

In our design, we designed a 2-D systolic array architecture of
processing elements to compute SVD using 2x2 SVD problems
by two sided Jacobi rotation algorithm.

C. Systolic Array Architecture

Square mesh connected array architecture is used to
compute the SVD of N X N matrix. The N X N matrix is
divided into (N/2)*(N/2) 2 X 2 matrices. A processing element
(PE) is allocated to each 2 X 2 sub-matrix. Each element of
matrix is stored in a 16-bit register. The PEs can be classified
into diagonal PEs and off-diagonal PEs. The sub-matrices are
interconnected by input and output lines for transmitting

rotation parameters. The diagonal PEs calculate θ and
propagate the rotation parameters to the corresponding two
rows (p,q) and two columns. The off-diagonal PEs get the
rotation parameters from corresponding diagonal PE and apply
the rotation to the 2x2 matrix. During left rotation, the off-
diagonal PE receives rotation parameter from diagonal PE in
the row and similarly during right rotation, it receives rotation
parameters form diagonal PE in the column.

After left iteration, the rotated matrix values are stored back
to registers. After right rotation, the rotated matrix values are
subjected to interchange and then stored to registers. This
interchange is needed in order to get all (p,q) combinations.
The interchange between the PEs is shown in the above
diagram. Data interchange is directly coded into State machine
of the Systolic array in Verilog code. The Processing elements
perform the rotation operation on the matrix elements. Two
strategies for implementation of PE are considered.

D. θ computation based strategy

In this strategy, diagonal PE calculates the θ using
CORDIC algorithm. CORDIC (CO-ordination Rotation Digital
Computer) can be implemented to compute tan

-1
(y/x). y can be

given as 2*b and x can be provided as (d-a). The θ will be
stored in another 16 bit register. Then, θ is propagated to
corresponding p,q rows/columns and the rotation is applied to
matrix elements using CORDIC rotation. So, the diagonal PE
needs one CORDIC vector module and one CORDIC rotation
module and one 16-bit register for holding θ.

E. Direct rotation strategy

In the above method, the CORDIC will compute θ based on
direction of rotation. Similarly, during CORDIC rotation mode,
direction of rotation is generated back again from θ. Instead of
computing θ, propagating θ and then again compute direction
of rotation in CORDIC rotation module, we can directly give
direction to off-diagonal PEs. Main advantage is that, Diagonal
PE does not need extra register for storing θ. When the θ based
strategy is used for large NxN matrix, the routing for
propagation of θ to each off-diagonal PEs becomes more
complex because it needs 16 bit wires to be routed to each PE
in row and column. In this method, we are using only one bit to
be propagated to each PE, so it reduces the routing complexity
and also increases speed of computation. In θ based method, θ
computation and rotation will need 2 cycles. In this method,
rotation needs only 1 cycle which reduces the computation
time.

F. Diagonal PE

Diagonal PE will diagonalise the matrix in one cycle
instead of applying two rotations. During diagonalisation, the
direction of rotation is propagated to the off-diagonal PEs.
During left rotation, the matrix is diagonalised, the direction of
rotation is propagated to rows and the diagonalised values are
not stored. Again the same operation is done for right rotation,
the direction is propagated to columns and the diagonalised
values are subjected to interchange and stored to registers. The
matrix diagonalisation is implemented using CORDIC
algorithm. In this algorithm, since it does not need θ
computation, it does not need any ROM.

Jacobi rotation matrix can be written as

 (4)

Diagonalisation can be written as

 (5)

 (6)

Where s = tan(θ) is implemented using CORDIC algorithm.
In CORDIC algorithm, this above matrix operation is repeated
for s = 2

-i
, for i = 0 to 15. This can be written in Verilog code

as

sb2 = ((b0>>>i)<<<1);

s2a = ((a0>>>i)>>>i);

s2b = ((b0>>>i)>>>i);

s2d = ((d0>>>i)>>>i);

sa = (a0>>>i);

sd = (d0>>>i);

 if(dir == 1'b1) begin

a0 = a0 + sb2 + s2d;

b0 = b0 - sa - s2b + sd ;

c0 = c0 - sa - s2b + sd ;

d0 = d0 - sb2 + s2a;

end

else begin

a0 = a0 - sb2 + s2d;

b0 = b0 + sa - s2b - sd ;

c0 = c0 + sa - s2b - sd ;

d0 = d0 + sb2 + s2a;

end

In CORDIC algorithm, this cos
2
(θ) term is implemented

using hardware multiplier of constant value 0.3687. During
implementation of hardware multiplier for 0.3687, if we
truncate the result, the SVD values are reducing in each
iteration. So, we implemented rounding and the SVD values
were not reducing and the values stabilized.

Diagonal PE has the following inputs, four 16 bit numbers
of 2x2 matrix and start signal. Once the start signal goes high,
the CORDIC rotation starts from i=0 to 15. After 16 clock
cycles, the output done is set to high and the diagonalised
values are given at output. During rotation, the rotation
direction is set to 0 if it is positive rotation (+2

-i
), & set to 1 if it

is negative rotation (-2
-i
).

The direction of rotation (i.e. +2
-i
 or -2

-i
), is determined by

tan(θ)‟s sign. Instead of finding (2*b)/(d-a) and then taking
only sign bit, we use following simple logic operation to
compute sign of tan(θ).

assign numerator=((d0-a0)^(2*b0))<0?-1:0;

MSB of numerator signal will give the sign of tan(θ). 2*b0
is simple arithmetic shift left operation; d0-a0 requires a
subtractor. This simplified computation of direction of rotation,
requires only less hardware.

G. Non-diagonal PE

Non-Diagonal PE has the following inputs, four 16 bit
numbers of 2x2 matrix, row, direction-i and direction-j. The
outputs are four 16-bit numbers and done signal. In non-
diagonal PE, the rotation has to come from either row/column
diagonal PEs. During row operation, row signal is kept high by

the systolic array State machine, and during column operation,
row signal is held low. Based on the row signal, the direction
for rotation is chosen as either direction-i (row) or direction-j
(column). After 16 clock cycles, the output done is triggered
high. After each rotation, the output values are stored back to
registers in systolic array.

Off-diagonal PE does the following row operation for

matrix as

 (7)

Similarly, for column operation is done as

 (8)

Multiplication by 0.6073 is done using hardware multiplier
with rounding. The rounding is done by adding last bit to the
previous bit.

This block contains 4 adder/subtractors, 4 barrel shifters of
size 16, and a hardware constant multiplier implemented using
shift and add operation and several MUXes.

H. State machine for Systolic array

This State machine takes care of mainly three operations,

1) Loading the values of matrix from BRAM to registers.

2) Perform SVD operations (3 sweeps)

3) Writing computed SVD values back to BRAM.

During loading values from BRAM to registers, State
machine will generate address to be read (0 to 15) and store it
in corresponding registers in systolic array. During SVD
operations, State machine gives the signals whether it is row or
column operation to PEs and also it will interchange the values
after each column operations before storing the values. For
each sweep, state machine performs (n-1) pairs of row and
column rotations and it performs 3 sweeps.

During writing SVD values to BRAM, State machine
generated the respective address and asserts write enable to
BRAM. After writing all the values from registers of systolic
array to BRAM, it asserts the output signal svdok to high.

The design is implemented in FPGA board and tested with
4X4 symmetric matrix. The hardware takes 384 clock cycles to
compute SVD. The values are written back to BRAM for 4X4
symmetric matrix.

The design take 24 clock cycles for loading the initial
matrix values from BRAM to systolic array. Writing computed
SVD values to BRAM takes 18 clock cycles. Computation of
SVD values takes 342 cycles.

Each rotation (row/column) takes 19 cycles distributed as, 1
cycle for reading values from registers into CORDIC module,
16 cycles for CORDIC rotation, and 2 cycles for writing
rotated values into registers.

1 sweep needs = 19x2x3 = 114 cycles.

3 sweeps needs = 3x114 = 342 cycles.

The error ranges are generally low unless the SVD values
are too low (<2) or input values are high such that overflow
occurs during CORDIC operation. In order to reduce errors due
to truncation, we increased the internal hardware of the
CORDIC to work in 32 bit arithmetic. But the no of clock
cycles needed is 16 for CORDIC. We verified the results and
the values are same as the simulation results.

I. Non-symmetric case

Every 2x2 non-symmetric matrix can be converted to
symmetric matrix and EVD algorithm can be applied for the
resulting matrix to get the SVD values. Hence, symmetric SVD
algorithm can be extended to do generalized SVD
computations. This 2x2 symmetrisation requires 16 cycles and
the corresponding rotation parameter is applied for row off-
diagonal PEs for rotation.

Steps for Symmetrisation is

1) Find θ for (p,q) diagonal 2x2 matrix

 (9)

2) Apply the transformation A = J(p,q, θ) ‟ * A

Diagonal PE does the following symmetrisation operation for

 matrix as

 (10)
In Verilog code, this can be done in one step with CORDIC

implementation. Symmetrisation operation takes 19 cycles.
One row/column operation takes 19 cycles. Hence, one sweep
takes 171(19*3*3) cycles and three sweeps take 513 cycles.
The hardware takes 555 clock cycles to compute SVD and
write the results back to BRAM.

V. TESTING STRATEGY

For checking the correctness of the SVD, the simulation
results are compared with the values produced by a reference
Python program.

A. Simulation Strategy

Test Cases:

1. Test cases based on Range of inputs.

 All elements are of very small size.

 All elements which are in range 1 – 1000.

 All elements exceeding the value 1000.

 All elements are equal to zeros.

In all the above cases, the simulation results are very close
the expected values and the percentage of error is typically less
than 1. But in case of all the elements are of very small size the
percentage of error is typically from 1 to 20 due to its very
small input size. And also the simulation results are not
matching with the expected values for the input matrices where
all elements are exceeding the value 1000. This is because of
arithmetic operations on these elements exceeding the 16-bit
number.

The above graph presents the percentage of error values for
different kinds of Eigen values.

2. Test cases on Different combinations of diagonal
elements.

 Some test cases on all diagonal elements as zeros,
negative and positive.

 All non-diagonal elements as zeros and different
combination of diagonal elements.

In all the different combinations of diagonal and non-
diagonal elements the simulation results are matching with the
expected values produced by the reference program.

3. Test cases on Range of Eigen Values.

 Eigen values exceeding the value 2000.

For some of the Eigen values exceeding value 2000, the
percentage of error is becoming high because of the results of
the arithmetic operands exceed 16 bit value.

4. Test cases on Dependent rows.

 All the elements of the matrix are equal.

 Two of the matrix rows or columns are equal.

In these test cases the results generated by the simulation
are not matching with the excepted results. We are getting the
correct Eigen values only for the independent rows or columns.

B. Test Hardware Description

The matrix elements are initially stored in BRAM memory.
Apart from BRAM and Systolic array, the test hardware
contains DCM (Digital Clock Manager) and UART module.
BRAM memory is 32x16 bits single port Block RAM with
write enable.

Initially, run and reset input is made zero. UART is
connected to PC and the „serial port read‟ python program is
run in PC. To see the initial contents of BRAM (input matrix),
the press button „SWITCH‟ is pressed once. BRAM contents
will be transferred to PC. The python code captures the data
and displays it as matrix. Then the „run‟ input is asserted high.
After SVD is computed, the LED (svdok) will glow. Again the
„SWITCH‟ is pressed, so that the computed values are
transferred to PC and the python program displays it as matrix.

VI. HARDWARE

A. Hardware inferred

Total number of LUTs used is 11304 (41%) and number of

registers used is 1445 (2%).

TABLE I. HARDWARE BLOCKS IN DESIGN

Block Type No of Blocks

32-bit Adders/Subtractors 26

32-bit Adder Tree 32

Counters 13

32-bit Accumulator 8

Flip-flops 834

Comparators 9

32 bit shifter arithmetic right 20

FSM 2

The hardware contains number of adders and comparators

of 8, 16 bits also which is not included in above table.

B. Timing Information for SVD

In SVD calculation the maximum delay (critical path) is
due to data path from register arrays processing element PE21
(FF) to same element 14th output pin which is connected to a
register again. Finally Delay which accounts for clock period is
11.244 ns. The maximum clock frequency by which the design
can run is 88.9375MHz.

VII. CONCLUSION

The overall systolic array architecture for SVD does not
have any hardware multipliers which is a large reduction is
amount of resources used. This architecture is based on
multiplexers and adders. There is a lot of routing overhead
associated because the state machine of Systolic array needs
access to each register to data transfer between BRAM and
registers. This routing overhead can be reduced by adopting a
shift register based approach for loading values into registers
and also for storing values from the registers to BRAM. This
approach has not been implemented, but this can be done as
our future work.

REFERENCES

[1] Brent R.P., Luk F.T., Van Loan C. “Computation of the Singular Value
Decomposition Using Mesh-Connected Processors”. Journal of VLSI
and Computer Systems, Volume I, Number 3. pp 242-270. 1983

[2] GOTZE J., PAUL S., SAUER M.: „An efficient Jacobi-like algorithm
for parallel eigenvalue computation‟, IEEE Transactions on Computers,
1993, Vol 42,No.9, pp.1058–1065.

[3] A. A. Maciejewski and C. A. Klein, "The singular value decomposition:
Computation and applications to robotics," International Journal of
Robotics Research, Vol. 8, No. 6, pp. 63-79, December 1989.

[4] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Trans. Telecommun., vol. 10, pp. 585-595, Nov./Dec. 1999.

	I. Introduction
	II. Objective
	III. Applications
	A. Possible Applications
	B. Target Example

	IV. Design Strategy
	A. Choice of Approach
	B. Implementation Methodology
	C. Systolic Array Architecture
	D. θ computation based strategy
	E. Direct rotation strategy
	F. Diagonal PE
	G. Non-diagonal PE
	H. State machine for Systolic array
	I. Non-symmetric case

	V. Testing Strategy
	A. Simulation Strategy
	B. Test Hardware Description

	VI. Hardware
	A. Hardware inferred
	B. Timing Information for SVD

	VII. Conclusion
	References

