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Abstract—Singular value decomposition has been used in signal 

processing, image processing, principal component analysis, 

robotics and my other real time applications. These applications 

demand fast processing of large datasets. SVD needs large 

amount of computation. In this paper, we present the parallel 

implementation of Singular Value Decomposition in FGPA. SVD 

is implemented using two sided Jacobi algorithm to attain 

parallel systolic array architecture. The diagonal processing 

elements compute the rotation parameter and propagate to other 

off-diagonal processing elements in row and column for row and 

column operations respectively. The CORDIC algorithm is used 

in each processing element and optimized to have one bit rotation 

parameter which reduces the hardware requirement and routing 

overhead. The design has been tested and verified in Xilinx 

Spartan-6 LX45 FPGA for 4x4 asymmetric matrix.  
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I.  INTRODUCTION 

Singular Value Decomposition is a matrix factorization 
which decomposes any MxN rectangular matrix to a MxM 
orthogonal matrix, MxN diagonal matrix and NxN orthogonal 
matrix. MxN diagonal matrix contains the singular values of 
the rectangular matrix. SVD decomposition equation can be 
written as in 

 A = U Σ V
T
 (1) 

SVD is used in many applications such as Low rank 
approximation, Image Compression, Estimation & Inversion, 
pseudo inverse, principal component analysis etc. In many 
cases in real world applications, SVD computation needs to be 
done in real time, which demands a fast method for SVD 
computation. Parallel algorithms always fast in computing 
SVD. Implementing such parallel algorithm in FPGA will be 
suitable for real time applications. The paper is organized as 
follows. Section II discusses objective and requirements of the 
design. Section III discusses about possible applications and an 
example. Section IV discusses about choice of approach and 

algorithm explanation. Section V explains the testing strategy 
used and the testing results. Section VI gives the insight of 
hardware used in the design. We conclude the paper after 
giving timing information of the design.  

II. OBJECTIVE 

To implement Singular Value Decomposition (SVD) of a 
real matrix in FPGA with following requirements 

1) The design should run at minimum frequency of 50MHz. 

2) Once the input is loaded into the BRAM module and run 
signal is raised, the design takes 1000 clock cycles to complete 
the operation and load the values into BRAM module. 

3) The design computes SVD for symmetric matrices of 
maximum dimension 4X4 with each element as 16-bit. 

III. APPLICATIONS 

A. Possible Applications 

Hardware implementation of SVD is used in real time 
processing for Image processing applications such as face 
recognition, motion detection etc., Analysis of the kinematic 
and dynamic characteristics of robotic manipulators [3], Signal 
processing applications, mainly least squares type problems, 
Computation of pseudo inverse, MIMO communication 
systems. 

Such real-time applications need a hardware 
implementation of SVD. For fast computation of SVD, we go 
for parallel implementation approach in hardware. 

B. Target Example 

SVD is used in MIMO channel communication systems. 
MIMO systems offer increased capacity and data rate  without 
any increase in bandwidth or power. Paper [4] shows how SVD 
can be used in MIMO systems to decompose a MIMO channel 
into parallel sub-channels. So the computation speed for SVD 
should be very high in those real-time systems. We cannot go 



 

 

for a Parallel computer based approach because often the 
communication system may be mobile. Hardware, on-board 
solution is needed which can be achieved by implementing 
parallel computation of SVD in FPGA or ASIC. 

IV. DESIGN STRATEGY 

A. Choice of Approach 

This project aims at implementing SVD calculation 
algorithm which is suited for FPGAs.  There are many methods 
like Jacobi method; QR method and Hestenes (one-sided 
rotation) method are available for calculating SVD values. But, 
Jacobi algorithm is preferred because of its simplicity and the 
parallelism that can be exploited. This implementation aims at 
improving the speed of the traditional Jacobi algorithm by 
exploiting parallelism available. Initially, Singular Value 
Decomposition problem is reduced to symmetric Eigen Value 
Decomposition problem. After reduction, two sided Jacobi 
rotation method is used to find EVD. Jacobi algorithm is 
preferred because of its simplicity, regularity and local 
communication. 

 

B. Implementation Methodology 

In this method, given NxN matrix is divided into N/2 2x2 
sub problems and solved. This method uses CORDIC 
algorithm for doing Jacobi rotations. Jacobi Algorithm for 
Symmetric Eigen value computation is explained as follows. 

In two sided rotation Jacobi SVD algorithm, the matrix A is 
diagonalised by multiplying by left sided rotation matrix J(p, q, 
θ)‟ and right sided rotation matrix J(p, q, θ) in 

 A =  J(p,q,θ)‟ * A * J(p,q,θ) (2) 

for all (p,q) combinations, p,q ϵ 1 to N 

Multiplication by left rotation matrix only modifies p
th
 and 

q
th
 rows of matrix A. Similarly, multiplication by right rotation 

matrix only modifies p
th
 and q

th
 columns. The remaining values 

remain unchanged. This provides an opportunity to apply two 
Jacobi rotations in parallel for two non-overlapping values of 
(p,q). 

This allows us to perform many row operations (left 
rotation) in parallel and also for columns. Thus, this parallel 
algorithm is suitable for hardware implementation. For matrix, 

 

θ is computed as follows,  

  (3) 

This θ can be propagated to the (p,q) rows of matrix A for left 
rotation and same is done for right rotation (columns). If we 
have NxN matrix, we can do left rotation & right rotations for 
n/2 (p,q) combinations in parallel. It takes two cycles (one for 
left rotation and another for right rotation). To cover all p,q 
combinations, it takes (n-1) left and right rotations. So, over all 
operation take (n-1)x(2)x(n/2) cycles for complete Jacobi SVD 
algorithm. This complete cycle is called one sweep. Jacobi 
algorithm may need 3 to 6 sweeps in order to get correct SVD 
values. 

In our design, we designed a 2-D systolic array architecture of 
processing elements to compute SVD using 2x2 SVD problems 
by two sided Jacobi rotation algorithm. 

C. Systolic Array Architecture 

 

Square mesh connected array architecture is used to 
compute the SVD of N X N matrix. The N X N matrix is 
divided into (N/2)*(N/2) 2 X 2 matrices. A processing element 
(PE) is allocated to each 2 X 2 sub-matrix. Each element of 
matrix is stored in a 16-bit register. The PEs can be classified 
into diagonal PEs and off-diagonal PEs. The sub-matrices are 
interconnected by input and output lines for transmitting 



 

 

rotation parameters. The diagonal PEs calculate θ and 
propagate the rotation parameters to the corresponding two 
rows (p,q) and two columns. The off-diagonal PEs get the 
rotation parameters from corresponding diagonal PE and apply 
the rotation to the 2x2 matrix. During left rotation, the off-
diagonal PE receives rotation parameter from diagonal PE in 
the row and similarly during right rotation, it receives rotation 
parameters form diagonal PE in the column. 

After left iteration, the rotated matrix values are stored back 
to registers. After right rotation, the rotated matrix values are 
subjected to interchange and then stored to registers. This 
interchange is needed in order to get all (p,q) combinations. 
The interchange between the PEs is shown in the above 
diagram. Data interchange is directly coded into State machine 
of the Systolic array in Verilog code. The Processing elements 
perform the rotation operation on the matrix elements. Two 
strategies for implementation of PE are considered. 

D. θ computation based strategy 

In this strategy, diagonal PE calculates the θ using 
CORDIC algorithm. CORDIC (CO-ordination Rotation Digital 
Computer) can be implemented to compute tan

-1
(y/x). y can be 

given as 2*b and x can be provided as (d-a). The θ will be 
stored in another 16 bit register. Then, θ is propagated to 
corresponding p,q rows/columns and the rotation is applied to 
matrix elements using CORDIC rotation. So, the diagonal PE 
needs one CORDIC vector module and one CORDIC rotation 
module and one 16-bit register for holding θ. 

E. Direct rotation strategy 

In the above method, the CORDIC will compute θ based on 
direction of rotation. Similarly, during CORDIC rotation mode, 
direction of rotation is generated back again from θ. Instead of 
computing θ, propagating θ and then again compute direction 
of rotation in CORDIC rotation module, we can directly give 
direction to off-diagonal PEs. Main advantage is that, Diagonal 
PE does not need extra register for storing θ. When the θ based 
strategy is used for large NxN matrix, the routing for 
propagation of θ to each off-diagonal PEs becomes more 
complex because it needs 16 bit wires to be routed to each PE 
in row and column. In this method, we are using only one bit to 
be propagated to each PE, so it reduces the routing complexity 
and also increases speed of computation. In θ based method, θ 
computation and rotation will need 2 cycles. In this method, 
rotation needs only 1 cycle which reduces the computation 
time. 

F. Diagonal PE 

Diagonal PE will diagonalise the matrix in one cycle 
instead of applying two rotations. During diagonalisation, the 
direction of rotation is propagated to the off-diagonal PEs. 
During left rotation, the matrix is diagonalised, the direction of 
rotation is propagated to rows and the diagonalised values are 
not stored. Again the same operation is done for right rotation, 
the direction is propagated to columns and the diagonalised 
values are subjected to interchange and stored to registers. The 
matrix diagonalisation is implemented using CORDIC 
algorithm. In this algorithm, since it does not need θ 
computation, it does not need any ROM. 

 

Jacobi rotation matrix can be written as 

        (4) 

 

Diagonalisation can be written as 

        (5) 

          (6) 

Where s = tan(θ) is implemented using CORDIC algorithm. 
In CORDIC algorithm, this above matrix operation is repeated 
for s = 2

-i
, for i = 0 to 15. This can be written in Verilog code 

as 

sb2 = ((b0>>>i)<<<1); 

s2a = ((a0>>>i)>>>i); 

s2b = ((b0>>>i)>>>i); 

s2d = ((d0>>>i)>>>i); 

sa  = (a0>>>i); 

sd  = (d0>>>i); 

  if(dir == 1'b1) begin 

a0 = a0 + sb2 + s2d; 

b0 = b0 - sa - s2b + sd ; 

c0 = c0 - sa - s2b + sd ; 

d0 = d0 - sb2 + s2a; 

end 

else begin 

a0 = a0 - sb2  + s2d; 

b0 = b0 + sa - s2b - sd ; 



 

 

c0 = c0 + sa - s2b - sd ; 

d0 = d0 + sb2 + s2a; 

end 

In CORDIC algorithm, this cos
2
(θ) term is implemented 

using hardware multiplier of constant value 0.3687. During 
implementation of hardware multiplier for 0.3687, if we 
truncate the result, the SVD values are reducing in each 
iteration. So, we implemented rounding and the SVD values 
were not reducing and the values stabilized. 

Diagonal PE has the following inputs, four 16 bit numbers 
of 2x2 matrix and start signal. Once the start signal goes high, 
the CORDIC rotation starts from i=0 to 15. After 16 clock 
cycles, the output done is set to high and the diagonalised 
values are given at output. During rotation, the rotation 
direction is set to 0 if it is positive rotation (+2

-i
), & set to 1 if it 

is negative rotation (-2
-i
). 

The direction of rotation (i.e. +2
-i
 or -2

-i
), is determined by 

tan(θ)‟s sign.  Instead of finding (2*b)/(d-a) and then taking 
only sign bit, we use following simple logic operation to 
compute sign of tan(θ). 

assign numerator=((d0-a0)^(2*b0))<0?-1:0; 

MSB of numerator signal will give the sign of tan(θ). 2*b0 
is simple arithmetic shift left operation; d0-a0 requires a 
subtractor. This simplified computation of direction of rotation, 
requires only less hardware. 

G. Non-diagonal PE 

 

Non-Diagonal PE has the following inputs, four 16 bit 
numbers of 2x2 matrix, row, direction-i and direction-j. The 
outputs are four 16-bit numbers and done signal. In non-
diagonal PE, the rotation has to come from either row/column 
diagonal PEs. During row operation, row signal is kept high by 

the systolic array State machine, and during column operation, 
row signal is held low. Based on the row signal, the direction 
for rotation is chosen as either direction-i (row) or direction-j 
(column). After 16 clock cycles, the output done is triggered 
high. After each rotation, the output values are stored back to 
registers in systolic array. 

 

Off-diagonal PE does the following row operation for 

matrix as 

         (7) 

Similarly, for column operation is done as  

         (8) 

Multiplication by 0.6073 is done using hardware multiplier 
with rounding. The rounding is done by adding last bit to the 
previous bit. 

This block contains 4 adder/subtractors, 4 barrel shifters of 
size 16, and a hardware constant multiplier implemented using 
shift and add operation and several MUXes. 

H. State machine for Systolic array 

This State machine takes care of mainly three operations,  

1) Loading the values of matrix from BRAM to registers.  

2) Perform SVD operations (3 sweeps) 

3) Writing computed SVD values back to BRAM. 

During loading values from BRAM to registers, State 
machine will generate address to be read (0 to 15) and store it 
in corresponding registers in systolic array. During SVD 
operations, State machine gives the signals whether it is row or 
column operation to PEs and also it will interchange the values 
after each column operations before storing the values. For 
each sweep, state machine performs (n-1) pairs of row and 
column rotations and it performs 3 sweeps. 

 



 

 

During writing SVD values to BRAM, State machine 
generated the respective address and asserts write enable to 
BRAM. After writing all the values from registers of systolic 
array to BRAM, it asserts the output signal svdok to high. 

The design is implemented in FPGA board and tested with 
4X4 symmetric matrix. The hardware takes 384 clock cycles to 
compute SVD. The values are written back to BRAM for 4X4 
symmetric matrix. 

The design take 24 clock cycles for loading the initial 
matrix values from BRAM to systolic array. Writing computed 
SVD values to BRAM takes 18 clock cycles. Computation of 
SVD values takes 342 cycles. 

Each rotation (row/column) takes 19 cycles distributed as, 1 
cycle for reading values from registers into CORDIC module, 
16 cycles for CORDIC rotation, and 2 cycles for writing 
rotated values into registers. 

1 sweep needs = 19x2x3 = 114 cycles. 

3 sweeps needs = 3x114 = 342 cycles.  

The error ranges are generally low unless the SVD values 
are too low (<2) or input values are high such that overflow 
occurs during CORDIC operation. In order to reduce errors due 
to truncation, we increased the internal hardware of the 
CORDIC to work in 32 bit arithmetic. But the no of clock 
cycles needed is 16 for CORDIC. We verified the results and 
the values are same as the simulation results. 

I. Non-symmetric case  

Every 2x2 non-symmetric matrix can be converted to 
symmetric matrix and EVD algorithm can be applied for the 
resulting matrix to get the SVD values. Hence, symmetric SVD 
algorithm can be extended to do generalized SVD 
computations. This 2x2 symmetrisation requires 16 cycles and 
the corresponding rotation parameter is applied for row off-
diagonal PEs for rotation. 

Steps for Symmetrisation is 

1) Find θ for (p,q) diagonal 2x2 matrix 

   (9) 

2) Apply the transformation A = J(p,q, θ) ‟ * A   

Diagonal PE does the following symmetrisation operation for 

 matrix as 

   (10) 
In Verilog code, this can be done in one step with CORDIC 

implementation. Symmetrisation operation takes 19 cycles. 
One row/column operation takes 19 cycles. Hence, one sweep 
takes 171(19*3*3) cycles and three sweeps take 513 cycles. 
The hardware takes 555 clock cycles to compute SVD and 
write the results back to BRAM. 

V. TESTING STRATEGY 

For checking the correctness of the SVD, the simulation 
results are compared with the values produced by a reference 
Python program. 

A. Simulation Strategy 

Test Cases: 

1. Test cases based on Range of inputs. 

 All elements are of very small size. 

 All elements which are in range 1 – 1000. 

 All elements exceeding the value 1000. 

 All elements are equal to zeros. 

In all the above cases, the simulation results are very close 
the expected values and the percentage of error is typically less 
than 1. But in case of all the elements are of very small size the 
percentage of error is typically from 1 to 20 due to its very 
small input size. And also the simulation results are not 
matching with the expected values for the input matrices where 
all elements are exceeding the value 1000. This is because of 
arithmetic operations on these elements exceeding the 16-bit 
number. 

 

The above graph presents the percentage of error values for 
different kinds of Eigen values. 

2. Test cases on Different combinations of diagonal 
elements.  

 Some test cases on all diagonal elements as zeros, 
negative and positive.  

 All non-diagonal elements as zeros and different 
combination of diagonal elements. 

In all the different combinations of diagonal and non-
diagonal elements the simulation results are matching with the 
expected values produced by the reference program.  

3. Test cases on Range of Eigen Values. 

 Eigen values exceeding the value 2000. 



 

 

For some of the Eigen values exceeding value 2000, the 
percentage of error is becoming high because of the results of 
the arithmetic operands exceed 16 bit value. 

4. Test cases on Dependent rows. 

 All the elements of the matrix are equal. 

 Two of the matrix rows or columns are equal. 

In these test cases the results generated by the simulation 
are not matching with the excepted results. We are getting the 
correct Eigen values only for the independent rows or columns. 

 

B. Test Hardware Description 

The matrix elements are initially stored in BRAM memory. 
Apart from BRAM and Systolic array, the test hardware 
contains DCM (Digital Clock Manager) and UART module. 
BRAM memory is 32x16 bits single port Block RAM with 
write enable. 

Initially, run and reset input is made zero. UART is 
connected to PC and the „serial port read‟ python program is 
run in PC. To see the initial contents of BRAM (input matrix), 
the press button „SWITCH‟ is pressed once. BRAM contents 
will be transferred to PC. The python code captures the data 
and displays it as matrix. Then the „run‟ input is asserted high. 
After SVD is computed, the LED (svdok) will glow. Again the 
„SWITCH‟ is pressed, so that the computed values are 
transferred to PC and the python program displays it as matrix. 

 

VI. HARDWARE 

A. Hardware inferred 

Total number of LUTs used is 11304 (41%) and number of 

registers used is 1445 (2%). 

TABLE I.  HARDWARE BLOCKS IN DESIGN 

Block Type No of Blocks 

32-bit Adders/Subtractors 26 

32-bit Adder Tree 32 

Counters 13 

32-bit Accumulator 8 

Flip-flops 834 

Comparators 9 

32 bit shifter arithmetic right 20 

FSM 2 

The hardware contains number of adders and comparators 

of 8, 16 bits also which is not included in above table. 

B. Timing Information for SVD 

In SVD calculation the maximum delay (critical path) is 
due to data path from register arrays processing element PE21 
(FF) to same element 14th output pin which is connected to a 
register again. Finally Delay which accounts for clock period is 
11.244 ns. The maximum clock frequency by which the design 
can run is 88.9375MHz. 

VII. CONCLUSION 

The overall systolic array architecture for SVD does not 
have any hardware multipliers which is a large reduction is 
amount of resources used. This architecture is based on 
multiplexers and adders. There is a lot of routing overhead 
associated because the state machine of Systolic array needs 
access to each register to data transfer between BRAM and 
registers. This routing overhead can be reduced by adopting a 
shift register based approach for loading values into registers 
and also for storing values from the registers to BRAM. This 
approach has not been implemented, but this can be done as 
our future work. 
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